Oxidized-LDL Deteriorated the Renal Residual Function and Parenchyma in CKD Rat through Upregulating Epithelial Mesenchymal Transition and Extracellular Matrix-Mediated Tubulointerstitial Fibrosis-Pharmacomodulation of Rosuvastatin

ANTIOXIDANTS(2022)

引用 0|浏览6
暂无评分
摘要
This study tested the hypothesis that intrarenal arterial transfusion of oxidized low-density lipoprotein (ox-LDL) jeopardized the residual renal function and kidney architecture in rat chronic kidney disease ((CKD), i.e., induced by 5/6 nephrectomy) that was reversed by rosuvastatin. Cell culture was categorized into A1 (NRK-52E cells), A2 (NRK-52E + TGF-beta), A3 (NRK-52E + TGF-beta + ox-LDL) and A4 (NRK-52E + TGF-beta + ox-LD). The result of in vitro study showed that cell viability (at 24, 48 and 72 h), NRK-52E ox-LDL-uptake, protein expressions of epithelial-mesenchymal-transition (EMT) markers (i.e., p-Smad2/snail/alpha-SMA/FSP1) and cell migratory and wound healing capacities were significantly progressively increased from A1 to A4 (all p < 0.001). SD rats were categorized into group 1 (sham-operated control), group 2 (CKD), group 3 (CKD + ox-LDL/0.2 mg/rat at day 14 after CKD induction) and group 4 (CKD + ox-LDL-treated as group 3+ rosuvastatin/10 mg/kg/day by days 20 to 42 after CKD induction) and kidneys were harvested at day 42. The circulatory levels of BUN and creatinine, ratio of urine-protein to urine-creatinine and the protein expressions of the above-mentioned EMT, apoptotic (cleaved-caspase3/cleaved-PARP/mitochondrial-Bax) and oxidative-stress (NOX-1/NOX-2/oxidized-protein) markers were lowest in group 1, highest in group 3 and significantly higher in group 4 than in group 2 (all p < 0.0001). Histopathological findings demonstrated that the kidney injury score, fibrotic area and kidney injury molecule-1 (KIM-1) displayed an identical pattern, whereas the cellular expression of podocyte components (ZO-1/synaptopodin) exhibited an opposite pattern of EMT markers (all p < 0.0001). In conclusion, ox-LDL damaged the residual renal function and kidney ultrastructure in CKD mainly through augmenting oxidative stress, EMT and fibrosis that was remarkably reversed by rosuvastatin.
更多
查看译文
关键词
chronic kidney disease,oxidized low-density lipoprotein,epithelial mesenchymal transition,oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要