Improved noise performance from the next-generation buried-channel p-Mosfet SiSeROs

arxiv(2023)

引用 0|浏览33
暂无评分
摘要
The Single electron Sensitive Read Out (SiSeRO) is a novel on-chip charge detector output stage for charge-coupled device (CCD) image sensors. Developed at MIT Lincoln Laboratory, this technology uses a p-MOSFET transistor with a depleted internal gate beneath the transistor channel. The transistor source-drain current is modulated by the transfer of charge into the internal gate. At Stanford, we have developed a readout module based on the drain current of the on-chip transistor to characterize the device. In our earlier work, we characterized a number of first prototype SiSeROs with the MOSFET transistor channels at the surface layer. An equivalent noise charge (ENC) of around 15 electrons root mean square (RMS) was obtained. In this work, we examine the first buried-channel SiSeRO. We have achieved substantially improved noise performance of around 4.5 electrons root mean square (RMS) and a full width half maximum (FWHM) energy resolution of 132 eV at 5.9 keV, for a readout speed of 625 kpixel/s. We also discuss how digital filtering techniques can be used to further improve the SiSeRO noise performance. Additional measurements and device simulations will be essential to further mature the SiSeRO technology. This new device class presents an exciting new technology for the next-generation astronomical X-ray telescopes requiring fast, low-noise, radiation-hard megapixel imagers with moderate spectroscopic resolution.
更多
查看译文
关键词
improved noise performance,next-generation,buried-channel,p-mosfet
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要