Emulator-based Bayesian inference on non-proportional scintillation models by compton-edge probing

NATURE COMMUNICATIONS(2023)

引用 0|浏览9
暂无评分
摘要
Scintillator detector response modeling has become an essential tool in various research fields such as particle and nuclear physics, astronomy or geophysics. Yet, due to the system complexity and the requirement for accurate electron response measurements, model inference and calibration remains a challenge. Here, we propose Compton edge probing to perform non-proportional scintillation model (NPSM) inference for inorganic scintillators. We use laboratory-based gamma-ray radiation measurements with a NaI(Tl) scintillator to perform Bayesian inference on a NPSM. Further, we apply machine learning to emulate the detector response obtained by Monte Carlo simulations. We show that the proposed methodology successfully constrains the NPSM and hereby quantifies the intrinsic resolution. Moreover, using the trained emulators, we can predict the spectral Compton edge dynamics as a function of the parameterized scintillation mechanisms. The presented framework offers a simple way to infer NPSMs for any inorganic scintillator without the need for additional electron response measurements. Scintillators are widely used for radiation detection and require proper calibration in such applications. Here the authors discuss a Bayesian inference and machine learning method in combination with the Compton-edge probing that can describe the non-proportional scintillation response of inorganic scintillators.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要