Design of the Reverse Logistics System for Medical Waste Recycling Part I: System Architecture, Classification & Monitoring Scheme, and Site Selection Algorithm

CoRR(2023)

引用 0|浏览3
暂无评分
摘要
With social progress and the development of modern medical technology, the amount of medical waste generated is increasing dramatically. The problem of medical waste recycling and treatment has gradually drawn concerns from the whole society. The sudden outbreak of the COVID-19 epidemic further brought new challenges. To tackle the challenges, this study proposes a reverse logistics system architecture with three modules, i.e., medical waste classification & monitoring module, temporary storage & disposal site selection module, as well as route optimization module. This overall solution design won the Grand Prize of the "YUNFENG CUP" China National Contest on Green Supply and Reverse Logistics Design ranking 1st. This paper focuses on the description of architectural design and the first two modules, especially the module on site selection. Specifically, regarding the medical waste classification & monitoring module, three main entities, i.e., relevant government departments, hospitals, and logistics companies, are identified, which are involved in the five management functions of this module. Detailed data flow diagrams are provided to illustrate the information flow and the responsibilities of each entity. Regarding the site selection module, a multi-objective optimization model is developed, and considering different types of waste collection sites (i.e., prioritized large collection sites and common collection sites), a hierarchical solution method is developed employing linear programming and K-means clustering algorithms sequentially. The proposed site selection method is verified with a case study and compared with the baseline, it can immensely reduce the daily operational costs and working time. Limited by length, detailed descriptions of the whole system and the remaining route optimization module can be found at https://shorturl.at/cdY59.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要