Differential contractility regulates cancer stem cell migration.

Rachel K Heussner, Hongrong Zhang, Guhan Qian, Mikayla J Baker,Paolo P Provenzano

Biophysical journal(2023)

引用 1|浏览2
暂无评分
摘要
Cancer stem cells (CSCs) are known to have a high capacity for tumor initiation and the formation of metastases. We have previously shown that in collagen constructs mimetic of aligned extracellular matrix architectures observed in carcinomas, breast CSCs demonstrate enhanced directional and total motility compared with more differentiated carcinoma populations. Here, we show that CSCs maintain increased motility in diverse environments including on 2D elastic polyacrylamide gels of various stiffness, 3D randomly oriented collagen matrices, and ectopic cerebral slices representative of a common metastatic site. A consistent twofold increase of CSC motility across platforms suggests a general shift in cell migration mechanics between well-differentiated carcinoma cells and their stem-like counterparts. To further elucidate the source of differences in migration, we demonstrate that CSCs are less contractile than the whole population (WP) and develop fewer and smaller focal adhesions and show that enhanced CSC migration can be tuned via contractile forces. The WP can be shifted to a CSC-like migratory phenotype using partial myosin II inhibition. Inversely, CSCs can be shifted to a less migratory WP-like phenotype using microtubule-destabilizing drugs that increase contractility or by directly enhancing contractile forces. This work begins to reveal the mechanistic differences driving CSC migration and raises important implications regarding the potentially disparate effects of microtubule-targeting agents on the motility of different cell populations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要