Designing of trimetallic-phase ternary metal sulfides coupled with N/S doped carbon protector for superior and safe Li/Na storage.

Journal of colloid and interface science(2023)

引用 19|浏览4
暂无评分
摘要
Traditional transition metal sulfides (TMSs) have shown favorable potentials in energy storage. Nevertheless, its further usage is plagued by the issues of particle breakage and large volume change. In this work, the nanostructured ternary TMSs coupled with N/S doped carbon protector (NiCoFe-S@NSC) is delicately designed via compositional regulation and spatial structure protection strategies. As lithium ion batteries anode, this electrode gives an impressive capacity of 995.7 mAh/g after running 1000 cycles at 1 A/g. More importantly, NiCoFe-S@NSC electrode still shows a discharge capacity of 221.94 mAh/g after running 20,000 cycles at 10 A/g, reflecting an extremely-low capacity decay rate of 0.0377 ‰ per cycle. As sodium ion batteries anode, a high initial discharge capacity of 896.4 mA h g-1 can be found. Even after running 400 cycles at 5 A/g, the electrode still displays a reversible capacity of 334.5 mAh/g with outstanding coulombic efficiency above 98.0 %. Impressively, LiNixCoyMn1-x-yO2//NiCoFe-S@NSC full cell gives incipient discharge/charge capacities of 186.89/240.18 mAh/g. Moreover, the discharge capacities for the following 100 cycles remain above 150 mAh/g. Thermal runaway tests also demonstrate the higher thermal safety of cells with NiCoFe-S@NSC electrode, accompanying with the promoted activation energy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要