High-capacity polysulfide-polyiodide nonaqueous redox flow batteries with a ceramic membrane.

Nanoscale advances(2023)

引用 1|浏览0
暂无评分
摘要
Nonaqueous redox flow batteries (NRFBs) have been regarded as promising large-scale electrochemical energy storage technology due to the wider solvent stable potential windows and greater selection of materials. However, the application of NRFBs is greatly limited considering the low capacity and high cost of active materials. In this work, we design and demonstrate a high-capacity polysulfide (PS)-polyiodide (PI) NRFB in Li-ion based 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) (v/v ∼ 1 : 1) organic electrolyte. The high solubility and low cost of PS (5 M) and PI (4 M) can achieve the high capacity and high applicability of NRFBs, which is attractive for realizing large-scale stationary energy storage. The highest volumetric capacity of 28 Ah L based on a full cell is achieved with 1.5 M PS-4 M PI. The high coulombic efficiency (∼100%) and capacity retention (>99%) for 100 cycles in the PS-PI system is demonstrated by using a Li-ion conducting ceramic membrane. Voltage control is applied for both PS and PI to avoid the formation of irreversible solid LiS and I, which ensures the high stability of battery reaction. UV-vis spectroscopy reveals the high reversibility of PS and PI in DOL/DME. A continuous flow mode test of the PS-PI system is also demonstrated to realize >300 hours stable cycling performance which implies good applicability for a long-term process. The successful demonstration of this high-capacity PS-PI nonaqueous system provides a new direction to promote the application of NRFBs in more fields.
更多
查看译文
关键词
nonaqueous redox flow batteries,ceramic membrane,high-capacity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要