The Simons Observatory: pipeline comparison and validation for large-scale B-modes

Astronomy & Astrophysics(2023)

引用 0|浏览36
暂无评分
摘要
The upcoming Simons Observatory Small Aperture Telescopes aim at achieving a constraint on the primordial tensor-to-scalar ratio $r$ at the level of $\sigma(r=0)\lesssim0.003$, observing the polarized CMB in the presence of partial sky coverage, cosmic variance, inhomogeneous non-white noise, and Galactic foregrounds. We present three different analysis pipelines able to constrain $r$ given the latest available instrument performance, and compare their predictions on a set of sky simulations that allow us to explore a number of Galactic foreground models and elements of instrumental noise, relevant for the Simons Observatory. The three pipelines use different combinations of parametric and non-parametric component separation at the map and power spectrum levels, and employ $B$-mode purification to estimate the CMB $B$-mode power spectrum. They are tested and compared regarding their capability to analyze a common set of simulated realistic frequency maps, and to extract constraints on the tensor-to-scalar ratio $r$. Their performance is evaluated in terms of bias and statistical uncertainty on this parameter. In most of the scenarios the three methodologies achieve similar performance. Nevertheless, several simulations with complex foreground signals lead to a $>2\sigma$ bias on $r$ if analyzed with the default versions of these pipelines, highlighting the need for more sophisticated pipeline components that marginalize over foreground residuals. We show two such extensions, using power-spectrum-based and map-based methods, that are able to fully reduce the bias on $r$ below the statistical uncertainties in all foreground models explored, at a moderate cost in terms of $\sigma(r)$.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要