Pulmonary rehabilitation restores limb muscle mitochondria and improves the intramuscular metabolic profile.

Chinese medical journal(2023)

引用 0|浏览26
暂无评分
摘要
BACKGROUND:Exercise, as the cornerstone of pulmonary rehabilitation, is recommended to chronic obstructive pulmonary disease (COPD) patients. The underlying molecular basis and metabolic process were not fully elucidated. METHODS:Sprague-Dawley rats were classified into five groups: non-COPD/rest ( n  = 8), non-COPD/exercise ( n  = 7), COPD/rest ( n  = 7), COPD/medium exercise ( n  = 10), and COPD/intensive exercise ( n  = 10). COPD animals were exposed to cigarette smoke and lipopolysaccharide instillation for 90 days, while the non-COPD control animals were exposed to room air. Non-COPD/exercise and COPD/medium exercise animals were trained on a treadmill at a decline of 5° and a speed of 15 m/min while animals in the COPD/intensive exercise group were trained at a decline of 5° and a speed of 18 m/min. After eight weeks of exercise/rest, we used ultrasonography, immunohistochemistry, transmission electron microscopy, oxidative capacity of mitochondria, airflow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI), and transcriptomics analyses to assess rectal femoris (RF). RESULTS:At the end of 90 days, COPD rats' weight gain was smaller than control by 59.48 ± 15.33 g ( P  = 0.0005). The oxidative muscle fibers proportion was lower ( P  < 0.0001). At the end of additional eight weeks of exercise/rest, compared to COPD/rest, COPD/medium exercise group showed advantages in weight gain, femoral artery peak flow velocity (Δ58.22 mm/s, 95% CI: 13.85-102.60 mm/s, P  = 0.0104), RF diameters (Δ0.16 mm, 95% CI: 0.04-0.28 mm, P  = 0.0093), myofibrils diameter (Δ0.06 μm, 95% CI: 0.02-0.10 μm, P  = 0.006), oxidative muscle fiber percentage (Δ4.84%, 95% CI: 0.15-9.53%, P  = 0.0434), mitochondria oxidative phosphorylate capacity ( P  < 0.0001). Biomolecules spatial distribution in situ and bioinformatic analyses of transcriptomics suggested COPD-related alteration in metabolites and gene expression, which can be impacted by exercise. CONCLUSION:COPD rat model had multi-level structure and function impairment, which can be mitigated by exercise.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要