In Vitro and In Vivo Validation of CYP6A14 and CYP6N6 Participation in Deltamethrin Metabolic Resistance in Aedes albopictus.

The American journal of tropical medicine and hygiene(2023)

引用 0|浏览9
暂无评分
摘要
The extensive use of chemical insecticides for public health and agricultural purposes has increased the occurrence and development of insecticide resistance. This study used transcriptome sequencing to screen 10 upregulated metabolic detoxification enzyme genes from Aedes albopictus resistant strains. Of these, CYP6A14 and CYP6N6 were found to be substantially overexpressed in the deltamethrin-induced expression test, indicating their role in deltamethrin resistance in Ae. albopictus. Furthermore, the corresponding 60-kDa recombinant proteins, CYP6A14 and CYP6N6, were successfully expressed using the Escherichia coli expression system. Enzyme activity studies revealed that CYP6A14 (5.84 U/L) and CYP6N6 (6.3 U/L) have cytochrome P450 (CYP450) enzyme activity. In vitro, the metabolic analysis revealed that the recombinant proteins degraded deltamethrin into 1-oleoyl-sn-glycero-3-phosphoethanolamine and 2',2'-dibromo-2'-deoxyguanosine. Subsequently, the CYP450 genes in larvae of Ae. albopictus were silenced by RNA interference technology to study deltamethrin resistance in vivo. The silencing of CYP6A14 and CYP6N6 increased the mortality rate of mosquitoes without affecting their survival time, spawning quantity, hatching rate, and other normal life activities. Altogether, CYP6A14 and CYP6N6 belong to the CYP6 family and mutually increase deltamethrin resistance in Ae. albopictus.
更多
查看译文
关键词
deltamethrin metabolic resistance,cyp6a14
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要