Fermionization of a Few-Body Bose Gas Immersed into a Bose-Einstein Condensate

arxiv(2023)

引用 0|浏览2
暂无评分
摘要
We study the recently introduced self-pinning transition [Phys. Rev. Lett. 128, 053401 (2022)] in a quasi-one-dimensional two-component quantum gas in the case where the component immersed into the Bose-Einstein condensate has a finite intraspecies interaction strength. As a result of the matter-wave backaction, the fermionization in the limit of infinite intraspecies repulsion occurs via a first-order phase transition to the self-pinned state, which is in contrast to the asymptotic behavior in static trapping potentials. The system also exhibits an additional superfluid state for the immersed component if the interspecies interaction is able to overcome the intraspecies repulsion. We present an analytical model that includes the superfluid state and derive an approximation to the transition line in the phase diagram. The full phase diagram of the system is mapped out numerically for the case of N=2 and N=3 atoms in the immersed component.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要