Digital manufacturing of personalised footwear with embedded sensors

Scientific reports(2023)

引用 5|浏览18
暂无评分
摘要
The strong clinical demand for more accurate and personalized health monitoring technologies has called for the development of additively manufactured wearable devices. While the materials palette for additive manufacturing continues to expand, the integration of materials, designs and digital fabrication methods in a unified workflow remains challenging. In this work, a 3D printing platform is proposed for the integrated fabrication of silicone-based soft wearables with embedded piezoresistive sensors. Silicone-based inks containing cellulose nanocrystals and/or carbon black fillers were thoroughly designed and used for the direct ink writing of a shoe insole demonstrator with encapsulated sensors capable of measuring both normal and shear forces. By fine-tuning the material properties to the expected plantar pressures, the patient-customized shoe insole was fully 3D printed at room temperature to measure in-situ gait forces during physical activity. Moreover, the digitized approach allows for rapid adaptation of the sensor layout to meet specific user needs and thereby fabricate improved insoles in multiple quick iterations. The developed materials and workflow enable a new generation of fully 3D printed soft electronic devices for health monitoring.
更多
查看译文
关键词
Design,synthesis and processing,Electronic devices,Soft materials,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要