Size-specific filtration efficiency and pressure drop of school-aged children's woven and nonwoven masks at varying face velocities.

American journal of infection control(2023)

Cited 1|Views14
No score
Abstract
BACKGROUND:Differences in physiology and breathing patterns between children and adults lead to disparate responses to aerosols of varying sizes. No standardized method exists for measuring the filtration efficiency (FE) of children's masks to reflect such differences. METHODS:Using an adult N95 mask as a control and two different face velocities (vf) (9.3 cm/s representing adults and 4.0 cm/s representing school-aged children), we tested the pressure drop (ΔP) through children's nonwoven masks (surgical and KN95) and children's woven masks (100% cotton and partially-cotton-based masks), as well as their size-specific FE between aerodynamic particle diameters of 0.02 and 2.01 μm. RESULTS:All three types of mask showed a 1 to 9% absolute increase in minimum FE at the lower vf and a significant decrease in ΔP. For children's surgical masks the increase in FE was significant for most of the examined particle sizes, but for children's woven masks the increase was limited to particles smaller than 0.04 μm. CONCLUSIONS:Lower vf for children is likely to lead to a higher FE, lower ΔP, and consequently higher filter qualities in children's masks. For woven masks, the FE for particles larger than 0.04 μm was low (typically <50%) for both vf's studied.
More
Translated text
Key words
Masks,Filtration Efficiency,Children,Woven,Nonwoven
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined