谷歌浏览器插件
订阅小程序
在清言上使用

A simple Turing reaction-diffusion model can explain how mother centrioles break symmetry to generate a single daughter

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览15
暂无评分
摘要
Centrioles duplicate when a mother centriole gives birth to a daughter that grows from its side. Polo-like-kinase 4 (PLK4), the master regulator of centriole duplication, is recruited symmetrically around the mother centriole, but it then concentrates at a single focus that defines the daughter centriole assembly site. How PLK4 breaks symmetry is unclear. Here, we propose that phosphorylated and unphosphorylated species of PLK4 form the two components of a classical Turing reaction-diffusion system. These two components bind-to/unbind-from the surface of the mother centriole at different rates, allowing a slow-diffusing activator species of PLK4 to accumulate at a single site on the mother, while a fast-diffusing inhibitor species of PLK4 suppresses activator accumulation around the rest of the centriole. This “short-range activation/long-range inhibition”, inherent to Turing-systems, can drive PLK4 symmetry breaking on a continuous centriole surface, with PLK4 overexpression producing multiple PLK4 foci and PLK4 kinase inhibition leading to uniform PLK4 accumulation—as observed experimentally. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要