Chrome Extension
WeChat Mini Program
Use on ChatGLM

Triisobutyl phosphate biodegradation by enriched activated sludge consortia: Degradation mechanism and bioaugmentation potential

Environmental pollution (Barking, Essex : 1987)(2023)

Cited 1|Views24
No score
Abstract
This study investigated the ability of activated sludge (AS) to biodegrade triisobutyl phosphate (TiBP) after acclimation in an AS bioreactor by adding 50 mg/L TiBP. The bioreactor significantly increased the biotrans-formation rate of TiBP (2.15-12.7 d-1) over two months of acclimation. Seven transformation products (TPs) of TiBP were identified by high-resolution mass spectrometry, and hydrolysis, hydroxylation and dehydrogenation were the major biodegradation pathways of TiBP. TiBP degradation solutions at 0, 3, 7, and 10 h showed significantly toxic effects on zebrafish embryos, while the toxicity of TiBP degradation solutions at 24 h significantly decreased. Pseudomonas was inferred to be a specific bacterial population in the TiBP metabolic microbial consortium (TMMC) that degrades TiBP (p < 0.001). When TMMC (0.5, 1, and 2 gss/L) was introduced into AS, the TiBP biotransformation rates (1.97, 2.05, and 2.26 d-1 at 1.0 mg/L TiBP, and 0.09, 0.11, and 0.83 d-1 at 30.0 mg/L TiBP) were significantly enhanced compared to the control (0.31 and 0.07 d-1) without TMMC inoculation. In general, this study provides new insights into the key species populations that accelerate TiBP degradation and promote the development of TiBP reduction biotechnology in WWTPs.
More
Translated text
Key words
Triisobutyl phosphate,Biotransformation pathway,Toxic,Microbial consortium,Bioaugmentation potential
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined