Optimizing the Fermi Level of a 3D Current Collector with Ni3S2/Ni3P Heterostructure for Dendrite‐Free Sodium‐Metal Batteries

Advanced Materials(2023)

Cited 2|Views9
No score
Abstract
Abstract Rechargeable sodium‐metal batteries (RSMBs) with high energy density and low cost are attracting extensive attention as promising energy‐storage technologies. However, the poor cyclability and safety issues caused by unstable solid electrolyte interphase (SEI) structure and dendrite issues limit their practical application. Herein, it is theoretically predicted that constructing the Ni 3 S 2 /Ni 3 P heterostructure with high work function can lower the Fermi energy level, and therefore effectively suppressing continuous electrolyte decomposition derived from the electron‐tunneling effect after long‐term sodiation process. Furthermore, the Ni 3 S 2 /Ni 3 P heterostructure on 3D porous nickel foam (Ni 3 S 2 /Ni 3 P@NF) is experimentally fabricated as an advanced Na‐anode current collector. The seamless Ni 3 S 2 /Ni 3 P heterostructure not only offers abundant active sites to induce uniform Na + deposition and enhance ion‐transport kinetics, but also facilitates the formation of stable SEI for dendrite‐free sodium anode, which are confirmed by cryogenic components transmission electron microscopy tests and in situ spectroscopy characterization. As a result, the Na‐composite anode (Ni 3 S 2 /Ni 3 P@NF@Na) delivers stable plating/stripping process of 5000 h and high average Coulombic efficiency of 99.7% over 2500 cycles. More impressively, the assembled sodium‐ion full cell displays ultralong cycle life of 10 000 cycles at 20 C. The strategy of stabilizing the sodium‐metal anode gives fundamental insight into the potential construction of advanced RSMBs.
More
Translated text
Key words
3d current collector,fermi level
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined