Hydrogen Production Mechanism in Low-Temperature Methanol Decomposition Catalyzed by Ni3Sn4 Intermetallic Compound: A Combined Operando and Density Functional Theory Investigation

The journal of physical chemistry letters(2023)

引用 2|浏览38
暂无评分
摘要
Hydrogen production from methanol decomposition to syngas (H2 + CO) is a promising alternative route for clean energy transition. One major challenge is related to the quest for stable, cost-effective, and selective catalysts operating below 400 degrees C. We illustrate an investigation of the surface reactivity of a Ni3Sn4 catalyst working at 250 degrees C, by combining density functional theory, operando X-ray absorption spectroscopy, and high-resolution transmission electron microscopy. We discovered that the catalytic reaction is driven by surface tin-oxide phases, which protects the underlying Ni atoms from irreversible chemical modifications, increasing the catalyst durability. Moreover, we found that Sn content plays a key role in enhancing the H2 selectivity, with respect to secondary products such as CO2. These findings open new perspectives for the engineering of scalable and low-cost catalysts for hydrogen production.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要