Cationic vacancy engineering of p-TiO2 for enhanced photocatalytic nitrogen fixation

Nanoscale(2023)

Cited 7|Views1
No score
Abstract
Defect engineering is one of the effective strategies to regulate and control catalyst properties. Constructing appropriate catalytically active centers effectively tunes the electronic and surface properties of the catalyst to achieve further enrichment of photogenerated electrons, enhances the electronic feedback of the catalytically active center to the anti-bonding orbitals of the nitrogen molecule, and enhances N-2 adsorption while weakening the N 00000000000000000 00000000000000000 00000000000000000 01111111111111110 00000000000000000 01111111111111110 00000000000000000 01111111111111110 00000000000000000 00000000000000000 00000000000000000 N bond. In this study, titanium vacancy (V-Ti)-rich undoped anatase p-TiO2 was successfully synthesized to investigate the effect of its metal vacancies on photocatalytic nitrogen reduction reaction (NRR) performance. The cation vacancies of V-Ti-rich p-TiO2 lead to local charge defects that enhance carrier separation and transport while trapping electrons to activate N-2, allowing effective reduction of the excited electrons to NH3. This work provides a viable strategy for driving the efficiency of photocatalytic nitrogen fixation processes by altering the structural properties of semiconductors through cationic vacancies, offering new opportunities and challenges for the design and preparation of titanium dioxide-based materials.
More
Translated text
Key words
cationic vacancy engineering,nitrogen,p-tio
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined