Chrome Extension
WeChat Mini Program
Use on ChatGLM

Directional amplified spontaneous emissions from Ag nanohole array with high diffraction orders.

Optics letters(2023)

Cited 0|Views8
No score
Abstract
Surface plasmon excitations in metallic hole arrays have been extensively studied in the context of light-matter interaction, since the generated Bloch surface plasmon polariton (Bloch-SPP) exhibits unique properties of nanoscale light confinement, near-field enhancements, and long-range metal surface propagation. In this work, we experimentally demonstrate a plasmonic device that exhibits highly directional emission in visible light; using Ag film with a thickness of 100 nm deposited on a subwavelength porous alumina array as a plasmonic cavity, four-level rhodamine 6G (R6G) is selected as the gain material. It is suggested that a Bloch-SPP with high diffraction orders on a Ag nanohole array can generate a strong local electric field and a high Purcell factor at a nanohole edge. Moreover, directional five-fold enhanced amplified spontaneous emission (ASE) with polarization dependence is observed under a low threshold of 199.9 W/cm in the visible light region, which comes from the optical feedback provided by the 2D periodic nanohole array. This work opens up a wide range of applications for real-time tunable wavelength, controlled multimode laser, fluorescence detection, etc.
More
Translated text
Key words
ag nanohole array,spontaneous emissions,high diffraction orders
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined