Early neural markers for individual difference in mathematical achievement determined from rational number processing.

Neuropsychologia(2023)

Cited 1|Views10
No score
Abstract
The neural markers for individual differences in mathematical achievement have been studied extensively using magnetic resonance imaging; however, high temporal resolution electrophysiological evidence for individual differences in mathematical achievement require further elucidation. This study evaluated the event-related potential (ERP) when 48 college students with high or low mathematical achievement (HA vs. LA) matched non-symbolic and symbolic rational numbers. Behavioral results indicated that HA students had better performance in the discretized non-symbolic matching, although the two groups showed similar performances in the continuous matching. ERP data revealed that even before non-symbolic stimulus presentation, HA students had greater Bereitschaftspotential (BP) amplitudes over posterior central electrodes. After the presentation of non-symbolic numbers, HA students had larger N1 amplitudes at 160 ms post-stimulus, over left-lateralized parieto-occipital electrodes. After the presentation of symbolic numbers, HA students displayed more profound P1 amplitudes at 100 ms post-stimulus, over left parietal electrodes. Furthermore, larger BP and N1 amplitudes were associated with the shorter reaction times, and larger P1 amplitudes corresponded to lower error rates. The BP effect could indicate preparation processing, and early left-lateralized N1 and P1 effects could reflect the non-symbolic and symbolic number processing along the dorsal neural pathways. These results suggest that the left-lateralized P1 and N1 components elicited by matching non-symbolic and symbolic rational numbers can be considered as neurocognitive markers for individual differences in mathematical achievement.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined