Chrome Extension
WeChat Mini Program
Use on ChatGLM

Packed modulation loops to reduce band broadening in two-dimensional liquid chromatography.

Journal of chromatography. A(2023)

Cited 2|Views9
No score
Abstract
Modulation interfaces employing sample loops are applied in many hyphenated separations such as two-dimensional liquid chromatography (2D-LC). When the first-dimension effluent in 2D-LC is eluted from the modulation loop, dispersion effects occur due to differences in the laminar flow velocity of the filling and emptying flow. These effects were recently studied by Moussa et al. whom recommended the use of coiled loops to promote radial diffusion and reduce this effect. In the 1980s, Coq et al. investigated the use of packed loops, which also promote radial diffusion, in large volume injection 1D-LC. Unfortunately, this concept was never investigated in the context of 2D-LC modulation. Our work evaluates use of packed loops in 2D-LC modulation and compares them to unpacked coiled and uncoiled modulation loops. The effect of the solvents, loop volume, differences in filling and emptying rates, and loop elution direction on the elution profile was investigated. Statistical moments were used as a pragmatic tool to quantify elution profile characteristics. Decreased dispersion was observed in all cases for the packed loops compared to unpacked loops and unpacked coiled loops. In particular for larger loop volumes the dispersion was reduced significantly. Furthermore, countercurrent elution resulted in narrower elution profiles in all cases compared to concurrent elution. We found that packed modulation loops are of high interested when analytes are not refocussed in the second-dimension separation (e.g. for size-exclusion chromatography). Moreover, our work suggests that the use of packed loops may aid in prevention of loop overfilling.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined