The ALS/FTD-related C9orf72 hexanucleotide repeat expansion forms RNA condensates through multimolecular G-quadruplexes

Nature Communications(2023)

Cited 0|Views9
No score
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that exist on a clinico-pathogenetic spectrum, designated ALS/FTD. The most common genetic cause of ALS/FTD is the expansion of the intronic hexanucleotide repeat (GGGGCC) n in C9orf72 . Here, we investigated the formation of nucleic-acid secondary structures in these expansion repeats, and their role in generating condensates characteristic of the diseases. We observed significant aggregation of the hexanucleotide sequence (GGGGCC) n , which we associated to the formation of multimolecular G-quadruplexes (mG4s), using a range of biophysical techniques. Exposing the condensates to G4-unfolding conditions led to prompt disassembly, highlighting the key role of mG4-formation in the condensation process. We further validated the biological relevance of our findings by demonstrating the ability of a G4-selective fluorescent probe to penetrate C9orf72 mutant human motor neurons derived from ALS patients, which revealed clear fluorescent signal in putative condensates. Our findings strongly suggest that RNA G- rich repetitive sequences can form protein-free condensates sustained by multimolecular G- quadruplexes, highlighting their potential relevance as therapeutic targets for C9orf72 mutation related ALS and FTD. ![Figure][1] ### Competing Interest Statement The authors have declared no competing interest. [1]: pending:yes
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined