Automated and parallel microfluidic DNA extraction with integrated pneumatic microvalves/pumps and reusable open-channel columns.

Electrophoresis(2023)

引用 1|浏览2
暂无评分
摘要
A novel microfluidic DNA extraction protocol based on integrated diaphragm microvalves/pumps and silica-deposited open-channel columns was developed specifically for automated and parallel DNA solid-phase extraction (SPE). The method uses microfluidic chips with a sandwiched structure containing three layers, which are the upper fluidic layer with surface-deposited silica on glass open channels as the extraction phase, the lower actuation layer with valve actuation channels on a glass wafer, and the middle poly(dimethylsiloxane) (PDMS) membrane for reversible bonding of the two glass substrates. These two glass substrates can be reused after thoroughly cleaning and the PDMS membrane can be replaced conveniently, which could effectively decrease the time and cost of chip manufacturing. The normally closed microvalves/pumps were used to automatically control all processes of the on-chip DNA SPE without cross-contamination and leakage, enabling the processing of multiple samples in parallel without changing the microvalve control module. Using the microchip device with integrated microvalves/pumps, automated, programmable, and simultaneous λ-DNA extractions from different samples could be attained, even from complex solutions such as human blood, and the silica-deposited open-channel columns could be reused stably and reliably. Results have demonstrated that most of the eluted λ-DNA was recovered in the second 2 µL of elution buffer with high-purity suitable for successful polymerase chain reaction amplification, making it possible for further integration into microfluidic devices for fully functional and high-throughput genetic analysis.
更多
查看译文
关键词
microfluidic DNA extraction,open-channel column,pneumatic microvalves/pumps,surface-deposited silica
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要