Enhancing Protein Adsorption for Improved Lateral Flow Assay on Cellulose Paper by Depleting Inert Additive Films Using Reactive Plasma.

Yi Zhang, Ahmed Khalil Khan, Deanna See,Jackie Y Ying

ACS applied materials & interfaces(2023)

引用 2|浏览7
暂无评分
摘要
Paper-based platforms are ideal for on-site surveillance of infectious diseases in low-resource settings due to their simplicity, self-containment, and low cost. The two most popular materials used in paper-based platforms are nitrocellulose and cellulose. The nitrocellulose membrane has a high protein binding affinity, but its high price is an issue. Cellulose paper is inexpensive and allows intricate fluidic control for more sophisticated biochemical reactions, but it has a low protein binding affinity. By examining the microstructure of cellulose paper, we discover that cellulose fibers in the paper matrix are covered by thin films, which possibly result from the additives used in the paper-making process. Our finding suggests that the thin films are inert to protein adsorption. By selectively depleting the inert films with reactive plasma, we were able to enhance the protein adsorption to the cellulose paper and improve the performance of lateral flow assays. The performance of certain lateral flow assays on the plasma-treated cellulose paper is equivalent to or better than that on the nitrocellulose membrane. This leads us to believe that cellulose paper with a microstructure exclusively designed for protein binding, either by refined paper manufacturing process or by post-manufacture modification such as the plasma treatment presented herein, can potentially replace nitrocellulose as a less expensive paper substrate for point-of-care rapid test kits.
更多
查看译文
关键词
cellulose,filter paper,lateral flow assay,plasma treatment,protein adsorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要