Farnesoid X Receptor (FXR) Regulates mTORC1 Signaling and Autophagy by Inhibiting SESN2 Expression

MOLECULAR NUTRITION & FOOD RESEARCH(2023)

Cited 0|Views16
No score
Abstract
ScopeThe mechanistic target of rapamycin complex 1 (mTORC1), as a link between nutrients and autophagy, senses many nutrients in the microenvironment. A growing body of recent literature describes the function of bile acids (BAs) as versatile signaling molecules, while it remains largely unclear whether mTORC1 can sense BAs and the mechanism has not been studied. Methods and resultsAfter treating LO2 cells with indicated concentration of chenodeoxycholic acid (CDCA) and farnesoid X receptor (FXR) inhibitor/activator for 6 h, it finds that CDCA and FXR significantly accelerate mTORC1 activation. The results of immunofluorescence indicate that CDCA and FXR inhibit cellular autophagy through activating mTORC1 pathway. In particular, these findings show that CDCA and FXR promote the lysosomal translocation and activation of mTORC1 in an amino acid-sensitive manner. Mechanistically, the transcriptomics data indicate that SESN2 is a checkpoint for mTORC1 lysosome translocation and activation induced by FXR, and knockdown SESN2 with siRNA suppresses the regulation of FXR on autophagy. ConclusionThese results indicate that FXR-induced decrease in SESN2 expression and activation of the mTORC1 pathway can control autophagy and be explored as potential therapeutic targets for enterohepatic and metabolic disorders.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined