Scalable production of an intermetallic Pt-Co electrocatalyst for high-power proton-exchange-membrane fuel cells

Energy & Environmental Science(2023)

引用 4|浏览9
暂无评分
摘要
Power performance is the primary bottleneck to the industrial application of proton-exchange-membrane fuel cells, which hinges on catalytic activity, oxygen mass transfer, and proton conduction at the cathode catalyst layer. Tackling all these critical factors requires a holistic design of catalyst, embodied by an elaborate synthesis. Here we present a straightforward synthetic approach to address these practical issues. A bimetallic compound, formulated as [Co(2,2 '-bipyridine)(3)][PtCl6], thermally decomposes and produces carbon-protected sub-5 nm-sized intermetallic Pt-Co nanoparticles, on which compressively-strained and rigid Pt-skin can be formed. In addition to the high intrinsic activity, we achieved the combined features of high electrochemical surface area, N-doping on the mesoporous carbon support, and highly stabilized Co that could promote oxygen mass transfer and proton conduction. In the single cell configuration, the catalyst achieved unprecedented rated power densities of 1.18 W cm(-2) and 5.9 W mg(Pt)(-1) at 0.67 V (with a cathode loading of 0.1 mg(Pt) cm(-2)), while experiencing voltage loss of only 29 mV (at 0.8 A cm(-2)) at the end of the test.
更多
查看译文
关键词
pt–co electrocatalyst,fuel cells,intermetallic pt–co,high-power,proton-exchange-membrane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要