Investigating the coupled influence of flow fields and porous electrodes on redox flow battery performance

JOURNAL OF POWER SOURCES(2023)

Cited 0|Views10
No score
Abstract
At the core of redox flow reactors, the design of the flow field geometry -which distributes the liquid electrolyte through the porous electrodes- and the porous electrode microstructure -which provides surfaces for electrochemical reactions- determines the performance of the system. To date, these two components have been engineered in isolation and their interdependence, although critical, is largely overlooked. Here, we systematically investigate the interaction between stateof-the-art electrode microstructures (a paper and a cloth) and prevailing flow field geometries (flow through, serpentine and four variations of interdigitated). We employ a suite of microscopic, fluid dynamics, and electrochemical diagnostics to elucidate structure-property-performance relationships. We find that interdigitated flow fields in combination with paper electrodes -which features a uniform microstructure with unimodal pore size distribution- and flow-through configurations combined with cloth electrodes -which have a hierarchical microstructure with bimodal pore size distribution- provide the most favorable trade-off between hydraulic and electrochemical performance. Our analysis evidences the importance of carrying out the co-design of flow fields and electrode microstructures in tandem.
More
Translated text
Key words
Redox flow batteries, Porous electrodes, Flow field design, Electrode microstructure, Mass transfer, Electrochemical reactor engineering, Flow field-electrode interaction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined