Root Traits Explain Multitrophic Interactions of Belowground Microfauna on Soil Nitrogen Mineralization and Plant Productivity

SSRN Electronic Journal(2023)

引用 0|浏览14
暂无评分
摘要
Both herbivorous and bacterivorous microfauna have been shown to influence root development, soil nitrogen (N) mineralization, and plant productivity. However, our knowledge of these effects is limited as multitrophic interactions remain largely unexplored. We investigated whether and how herbivorous nematodes (Pratylenchus zeae) and bacterivorous nematodes (Poikilolaimus oxycercus), alone and in combination, affect plant biomass (Lolium multiflorum) through root traits and/or soil N mineralization. Bacterivorous nematodes increased, whereas herbivorous nematodes decreased, plant productivity. We found that root trait coordination in response to soil microfauna was consistent with the concept of root economics space. The negative interaction between herbivorous and bacterivorous nematodes on plant productivity at high herbivorous nematode infestation could be explained by reduced N mineralization and variation in the root nitrogen concentration-root tissue density (RNC-RTD) axis aligned with increased herbivory intensity. This study revealed that herbivorous and bacterivorous nematodes moderated each other's effect on plant productivity via root trait coordination and N mineralization, and suggests, for the first time, the value of the root economics space concept for interpreting phenotypic root plasticity and functioning in response to local biotic factors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要