Chrome Extension
WeChat Mini Program
Use on ChatGLM

Pseudospin symmetry in resonant states in deformed nuclei

Physics Letters B(2023)

Cited 1|Views16
No score
Abstract
Pseudospin symmetry (PSS) plays critical roles in the formation of many physical phenomena, and has been studied extensively from spherical nuclei to deformed nuclei. However, there remains an open question about the PSS in resonant states in deformed systems. For the first time, we investigate the PSS in resonant states in deformed nuclei by solving the Dirac equation in the complex-momentum representation for a potential with quadrupole deformation at the first order obtained from relativistic mean-field (RMF) calculations. Taking 170Yb as an example, we explore the PSS in the single-particle resonant states by examining the energies, widths and the density distribution. Compared with the bound states, the pseudospin splittings between the resonant pseudospin doublets are found to be small, and the radial density distributions of pseudospin doublets look very similar, which indicates that the PSS of resonant states is well reserved in deformed nuclei. Moreover, we have comprehensively studied the dependencies of the PSS on nuclear deformations and the shape of potential, which are helpful to recognize the evolution of resonant pseudospin doublets in weakly-bound deformed nuclei and understand their exotic properties.
More
Translated text
Key words
Pseudospin symmetry,Resonant states,Deformed nuclei,Complex momentum representation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined