Effect of initial microstructure on its evolution and α→ω phase transition in Zr under hydrostatic loading

arxiv(2023)

引用 0|浏览27
暂无评分
摘要
The first study of the effect of the initial microstructure on its evolution under hydrostatic compression before, during, and after the irreversible α→ω phase transformation and during pressure release in Zr using in situ x-ray diffraction is presented. Two samples were studied: one is plastically pre-deformed Zr with saturated hardness and the other is annealed. Phase transformation α→ω initiates at lower pressure for the pre-deformed sample but above volume fraction of ω Zr c= 0.7, a larger volume fraction is observed for the annealed sample. This implies that the general theory based on the proportionality between the athermal resistance to the transformation and the yield strength must be essentially advanced. The crystal domain size significantly reduces, and microstrain and dislocation density increase during loading for both α and ω phases in their single-phase regions. For the α phase, domain sizes are much smaller for prestrained Zr, while microstrain and dislocation densities are much higher. Despite the generally accepted concept that hydrostatic pressure does not cause plastic straining, it does and is estimated. The microstructure is not inherited during phase transformation. The significant evolution of the microstructure and its effect on phase transformation demonstrates that their postmortem evaluation does not represent the actual conditions during loading. A simple model for the initiation of the phase transformation involving microstrain is suggested. The results suggest that an extended experimental basis is required for the predictive models for the combined pressure-induced phase transformations and microstructure evolutions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要