Decadal Application of WRF/Chem under Future Climate and Emission Scenarios: Impacts of Technology-Driven Climate and Emission Changes on Regional Meteorology and Air Quality

Atmosphere(2023)

引用 0|浏览13
暂无评分
摘要
This work presents new climate and emissions scenarios to investigate changes on future meteorology and air quality in the U.S. Here, we employ a dynamically downscaled Weather Research and Forecasting model coupled with chemistry (WRF/Chem) simulations that use two Intergovernmental Panel on Climate Change scenarios (i.e., A1B and B2) integrated with explicitly projected emissions from a novel Technology Driver Model (TDM). The projected 2046–2055 emissions show widespread reductions in most gas and aerosol species under both TDM/A1B and TDM/B2 scenarios over the U.S. The WRF/Chem simulations show that under the combined effects of the TDM/A1B climate and emission changes, the maximum daily average 8-h ozone (MDA8 h O3) increases by ~3 ppb across the U.S. mainly due to widespread increases in near-surface temperature and background methane concentrations, with some contributions from localized TDM emission changes near urban centers. For the TDM/B2 climate and emission changes, however, the MDA8 h O3 is widely decreased, except near urban centers where the relative TDM emission changes and O3 formation regimes leads to increased O3. The number of O3 exceedance days (i.e., MDA8 h O3 > 70 ppb) for the entire domain is significantly reduced by a grid cell maximum of up to 43 days (domain average ~0.5 days) and 62 days (domain average ~2 days) for the TDM/A1B and TDM/B2 scenarios, respectively, while in the western U.S., larger O3 increases lead to increases in nonattainment areas, especially for the TDM/A1B scenario. The combined effects of climate and emissions (for both A1B and B2 scenarios) will lead to widespread decreases in the daily 24-h average (DA24 h) PM2.5 concentrations, especially in the eastern U.S. (max decrease up to 93 µg m−3). The PM2.5 changes are dominated by decreases in anthropogenic emissions for both the TDM/A1B and TDM/B2 scenarios, with secondary effects on decreasing PM2.5 from climate change. The number of PM2.5 exceedance days (i.e., DA24 h PM2.5 > 35 µg m−3) is significantly reduced over the eastern U.S. under both TDM/A1B and B2 scenarios, which suggests that both climate and emission changes may synergistically lead to decreases in PM2.5 nonattainment areas in the future.
更多
查看译文
关键词
climate changes,emissions changes,air quality,downscaling,modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要