Substantial increase in P release following conversion of coastal wetlands to aquaculture ponds from altered kinetic exchange and resupply capacity.

Water research(2023)

引用 5|浏览27
暂无评分
摘要
The reclamation of wetlands and its subsequent conversion to aquaculture may alter regional nutrient (im)mobilization and cycling, although direct assessments of phosphorus (P) cycling and its budget balance following wetland conversion are currently scarce. Here, parallel field experiments were conducted to investigate and compare the availability and mobilization mechanisms of P from natural coastal wetlands and the adjacent converted aquaculture ponds based on high-resolution diffusive gradient in thin films (DGT) and dialysis (HR-Peeper) techniques and the DGT-induced fluxes in sediments (DIFS) model. The study found that the conversion of wetland to pond strongly reduced the sediment P pool by changing its forms and distribution. High-resolution data showed that concentrations of labile P and soluble reactive P across the sediment-water profiles were markedly enhanced by the converted aquaculture pond, although they exhibited large spatiotemporal heterogeneity. Moreover, the synchronous distribution of labile P, iron (Fe) and sulfur (S) across profiles in coastal wetlands indicated that the dissolution of Fe (III) oxyhydroxide-phosphate complexes coupled with sulfate reduction were the main mechanisms regulating sediment P mobilization in coastal areas. However, the converted aquaculture pond weakened or even reversed this dependence by decoupling the Fe-S-P reactions by changing the sediment structure and nutrient balance. Substantial increases in labile P, Fe and S fluxes in the pond suggested the conversion of wetland to aquaculture facilitated the internal release of P, Fe and S from sediment into water. The high resupply parameter (R) and desorption rate (k-1) combined with low response time (Tc) in the pond, as fitted by DIFS model, indicated the strong resupply capacity and fast kinetic exchange of sediment P across the sediment-water interface, which is consistent with the high P diffusion fluxes recorded in the pond. It was concluded that converted aquaculture ponds act as an important source of P release in coastal areas, potentially exacerbating water quality degradation and eutrophication. Specific initiatives and actions are therefore urgently needed to alleviate the internal P-loading during aquaculture.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要