Chrome Extension
WeChat Mini Program
Use on ChatGLM

Standardized method for mechanistic modeling of multimodal anion exchange chromatography in flow through operation.

Journal of chromatography. A(2023)

Cited 4|Views16
No score
Abstract
Multimodal chromatography offers an increased selectivity compared to unimodal chromatographic methods and is often employed for challenging separation tasks in industrial downstream processing (DSP). Unfortunately, the implementation of multimodal polishing into a generic downstream platform can be hampered by non-robust platform conditions leading to a time and cost intensive process development. Mechanistic modeling can assist experimental process development but readily applicable and easy to calibrate multimodal chromatography models are lacking. In this work, we present a mechanistic modeling aided approach that paves the way for an accelerated development of anionic mixed-mode chromatography (MMC) for biopharmaceutical purification. A modified multimodal isotherm model was calibrated using only three chromatographic experiments and was employed in the retention prediction of four antibody formats including a Fab, a bispecific, as well as an IgG1 and IgG4 antibody subtype at pH 5.0 and 6.0. The chromatographic experiments were conducted using the anionic mixed-mode resin Capto adhere at industrial relevant process conditions to enable flow through purification. An existing multimodal isotherm model was reduced to hydrophobic interactions in the linear range of the adsorption isotherm and successfully employed in the simulation of six chromatographic experiments per molecule in concert with the transport dispersive model (TDM). The model reduction to only three parameters did prevent structural parameter non-identifiability and enabled an analytical isotherm parameter determination that was further refined by incorporation of size exclusion effects of the selected multimodal resin. During the model calibration, three linear salt gradient elution experiments were performed for each molecule followed by an isotherm parameter uncertainty assessment. Lastly, each model was validated with a set of step and isocratic elution experiments. This standardized modeling approach facilitates the implementation of multimodal chromatography as a key unit operation for the biopharmaceutical downstream platform, while increasing the mechanistic insight to the multimodal adsorption behavior of complex biologics.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined