3D Graphene-Nanowire "Sandwich" Thermal Interface with Ultralow Resistance and Stiffness.

ACS nano(2023)

Cited 5|Views16
No score
Abstract
Despite the recent advancements of passive and active cooling solutions for electronics, interfaces between materials have generally become crucial barriers for thermal transport because of intrinsic material dissimilarity and surface roughness at interfaces. We demonstrate a 3D graphene-nanowire "sandwich" thermal interface that enables an ultralow thermal resistance of ∼0.24 mm2·K/W that is about 1 order of magnitude smaller than those of solders and several orders of magnitude lower than those of thermal greases, gels, and epoxies, as well as a low elastic and shear moduli of ∼1 MPa like polymers and foams. The flexible 3D "sandwich" exhibits excellent long-term reliability with >1000 cycles over a broad temperature range from -55 °C to 125 °C. This nanostructured thermal interface material can greatly benefit a variety of electronic systems and devices by allowing them to operate at lower temperatures or at the same temperature but with higher performance and higher power density.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined