Realization of Long Operational Lifetimes in Vacuum-Deposited Organic Light-Emitting Devices Based on para-Substituted Pyridine Carbazolylgold(III) C boolean AND C boolean AND N Complexes

Journal of the American Chemical Society(2023)

引用 4|浏览15
暂无评分
摘要
A new series of robust (CCN)-C-boolean AND-N-boolean AND carbazolylgold(III) complexes is designed and synthesized through the introduction of inert and sterically bulky oligophenyl substituents on the pyridyl moiety of the cyclometalating ligand. High photoluminescence quantum yields of up to 96% are recorded with these complexes doped in solid-state thin films, and short excited-state lifetimes of 0.3 its or less in the solid state at room temperature are found. Promising electroluminescence (EL) performances are shown by the vacuum-deposited organic light-emitting devices (OLEDs) based on this series of gold(III) complexes. High external quantum efficiencies of up to 19.5% with efficiency roll-offs of down to 10% at a practical luminance brightness level of 1000 cd m-2 are achieved. More importantly, record-long operational lifetimes (LT50) of up to 470,700 h at 100 cd m-2 are realized, which is currently the highest value among all classes of gold(III) complexes with tridentate pincer ligands. Particularly, by introducing a sterically bulky terphenyl moiety on the reactive site of the pyridine ring, the LT50 value is shown to attain similar to 7 times longer half-lifetime than that based on the unsubstituted complex. These unprecedented EL performances and the simple synthetic route in a mercury-free fashion make them promising emitting materials for practical OLEDs toward commercialization.
更多
查看译文
关键词
long operational lifetimes,vacuum-deposited,light-emitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要