Supramolecular assembly of a trivalent peptide hydrogel vaccine for cancer immunotherapy

Acta Biomaterialia(2023)

引用 6|浏览31
暂无评分
摘要
Vaccination shows great promise in cancer immunotherapy. However, the induction of robust and broad therapeutic CD8 T cell immunity against tumors is challenging due to the essential heterogenicity of tumor antigen expression. Recently, bioinspired materials have reshaped the field of cancer nanomedicine. Herein, a bioinspired nanofibrous trivalent peptide hydrogel vaccine was constructed using the spontaneous supramolecular co-assembly of three antigenic epitope-conjugated peptides, which could mimic the fibrillar structure and biological function of the extracellular matrix and naturally occurring protein assembly. The hydrogel vaccine could be accurately and flexibly adjusted to load each antigenic peptide at a defined ratio, which facilitated the antigen presentation of dendritic cells and significantly improved the initiation of CD8 T cell response and the secretion of interferon-γ (IFN-γ). C57BL/6 mice were immunized with the trivalent peptide hydrogel vaccine, where it elicited a high broad-spectrum antitumor CD8 T cell response that significantly inhibited the growth of B16 tumors in the absence of additional immunoadjuvants or delivery systems. In summary, the supramolecular assembly of triple antigenic epitope-conjugated peptides offers a simple, customizable, and versatile approach for the development of cancer vaccines with remarkable therapeutic efficacy, thereby providing a highly versatile platform for the application of personalized multivalent tumor vaccines.
更多
查看译文
关键词
Tumor immunotherapy,Peptide antigen,Bioinspired hydrogel,Co-assembly,Trivalent vaccine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要