Multiscale Modeling of Composite Materials under Volumetric and Interfacial Damage: Achieving Adaptive Model Order Reduction

AIAA SCITECH 2023 Forum(2023)

引用 0|浏览0
暂无评分
摘要
In this manuscript, we present a multiscale Adaptive Reduced-Order Modeling (AROM) framework to efficiently simulate the response of heterogeneous composite microstructures under interfacial and volumetric damage. This framework builds on the eigendeformation-based reduced-order homogenization model (EHM), which is based on the transformation field analysis (TFA) and operates in the context of computational homogenization with a focus on model order reduction of the microscale problem. EHM pre-computes certain microstructure information by solving a series of linear elastic problems defined over the fully resolved microstructure (i.e., concentration tensors, interaction tensors) and approximates the microscale problem using a much smaller basis spanned over subdomains (also called parts) of the microstructure. Using this reduced basis, and prescribed spatial variation of inelastic response fields over the parts, the microscale problem leads to a set of algebraic equations with part-wise responses as unknowns, instead of node-wise displacements as in finite element analysis. The volumetric and interfacial influence functions are calculated by using the Interface enriched Generalized Finite Element Method (IGFEM) to compute the coefficient tensors, in which the finite element discretization does not need to conform to the material interfaces. AROM takes advantage of pre-computed coefficient tensors associated with the finest ROM and efficiently computes the coefficient tensors of a series of gradually coarsening ROMs. During the multiscale analysis stage, the simulation starts with a coarse ROM which can capture the initial elastic response well. As the loading continues and response in certain parts of the microstructure starts to localize, the analysis adaptively switches to the next level of refined ROM to better capture those local responses. The performance of AROM is evaluated by comparing the results with regular EHM (no adaptive refinement) and IGFEM under different loading conditions and failure modes for various 2D and 3D microstructures. The proposed AROM provides an efficient way to model history-dependent nonlinear responses for composite materials under localized interface failure and phase damage.
更多
查看译文
关键词
multiscale modeling,interfacial damage,composite materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要