Chitosan/silk fibroin composite bilayer PCL nanofibrous mats for bone regeneration with enhanced antibacterial properties and improved osteogenic potential.

International journal of biological macromolecules(2023)

引用 0|浏览4
暂无评分
摘要
In regenerative medicine and bone tissue engineering, various composite materials are enormously popular, but the final tissue restoration outcome is not always satisfactory. In this study, bilayer-deposited multifunctional nanofiber mats were successfully fabricated with an osteogenic side of silk fibroin/poly (ε-caprolactone) (referred to as SF/PCL) and an antibacterial side of poly (ε-caprolactone)/chitosan (referred to as PCL/CS). The PCL/CS-SF/PCL (referred to as PCSP) mats exhibited biocompatible properties, sufficient hydrophilicity and mechanical properties, as well as a higher breaking strength (3.6 MPa) than the monolayer of SF/PCL mats (1.5 MPa). The antibacterial side of PCSP mats (A-layer) demonstrated ideal antibacterial potency because the survival rate of Escherichia coli (E. coli) (approximately 25 %) and Staphylococcus aureus (S. aureus) (approximately 15 %) were both significantly lower. Subsequently, the plasmid encoding runt related transcription factor 2 (Runx2) was complexed with the osteogenic side of PCSP mats (O-layer) through polyethyleneimine (PEI), thereby enhancing both osteogenesis-related gene expression and the formation of mineralized nodules. Similarly, the implantation of PCSP+Runx2 mats effectively promoted bone tissue generation in vivo. These results indicated the excellent prospects of applying PCSP mats to bone regeneration with gene delivery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要