EEF2-inactivating toxins engage the NLRP1 inflammasome and promote epithelial barrier disruption upon Pseudomonas infection

biorxiv(2023)

引用 2|浏览3
暂无评分
摘要
The intracellular inflammasome complex have been implicated in the maladaptive tissue damage and inflammation observed in chronic Pseudomonas aeruginosa infection. Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by P. aeruginosa , specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects Exotoxin A (EXOA), a ribotoxin released by P. aeruginosa Type 2 Secretion System (T2SS) during chronic infection. Mechanistically, EXOA-driven Eukaryotic Elongation Factor 2 (EEF2) ribosylation and covalent inactivation promotes ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, Diphtheria Toxin and Cholix Toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, Cystic Fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2. KEY POINTS ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
nlrp1 inflammasome,epithelial barrier disruption,upon<i>pseudomonas</i>infection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要