Synthesis and characterization of PCN-222 metal organic framework and its application for removing perfluorooctane sulfonate from water.

Journal of colloid and interface science(2023)

引用 18|浏览14
暂无评分
摘要
Poly- and perfluoro alkyl substances (PFAS) are a group of man-made, notoriously persistent, and highly toxic contaminants in the environment reported worldwide. Many adsorbents including granular activated carbon, graphene, biochar, zeolites, and clay minerals have been tested for PFAS removal from water, but most of these materials suffer from high cost and/or poor removal performance. Here, we synthesized, characterized, and examined the efficiency of PCN-222(Fe), a new porous metal organic framework (MOF) with high water stability, for adsorptive removal of a frequently occurring PFAS, perfluorooctane sulfonate (PFOS), from water. The adsorption isotherm and kinetic studies revealed high PFOS adsorption capacity of PCN-222 (2257 mg/g), with rapid PFOS removal rate (within 30 min). The structure of PCN-222 was unaffected in water in the pH range of 2-10 but disintegrated and lost its PFOS removal ability at pH > 10. The PFOS adsorption on PCN-222 was an endothermic reaction. Electrostatic attraction was a dominant mechanism for PFOS adsorption at < 1694 mg/g PFOS concentration, while hydrophobic interaction accompanied with hydrogen-bonding was responsible at ≥ 1694 mg/g PFOS concentration. The interlayer morphology of PCN-222 did not change due to increasing PFOS loading. The findings of this study demonstrated superior features of PCN-222 over other conventional adsorbents for its potential application in removing PFOS from contaminated water to reduce PFOS transfer from water to living organisms.
更多
查看译文
关键词
Adsorption,Metal organic frameworks,Partition coefficient,Poly- and perfluoro alkyl substances,Water treatment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要