Proposing magnetoimpedance effect for neuromorphic computing

Scientific Reports(2023)

引用 0|浏览8
暂无评分
摘要
Oscillation of physical parameters in materials can result in a peak signal in the frequency spectrum of the voltage measured from the materials. This spectrum and its amplitude/frequency tunability, through the application of bias voltage or current, can be used to perform neuron-like cognitive tasks. Magnetic materials, after achieving broad distribution for data storage applications in classical Von Neumann computer architectures, are under intense investigation for their neuromorphic computing capabilities. A recent successful demonstration regards magnetisation oscillation in magnetic thin films by spin transfer or spin orbit torques accompanied by magnetoresistance (MR) effect that can give a voltage peak in the frequency spectrum of voltage with bias current dependence of both peak frequency and amplitude. Here we use classical magnetoimpedance (MI) effect in a magnetic wire to produce such a peak and manipulate its frequency and amplitude by means of the bias voltage. We applied a noise signal to a magnetic wire with high magnetic permeability and owing to the frequency dependence of the magnetic permeability we got frequency dependent impedance with a peak at the maximum permeability. Frequency dependence of the MI effect results in different changes in the voltage amplitude at each frequency when a bias voltage is applied and therefore a shift in the peak position and amplitude can be obtained. The presented method and material provide optimal features in structural simplicity, low-frequency operation (tens of MHz-order) and high robustness at different environmental conditions. Our universal approach can be applied to any system with frequency dependent bias responses.
更多
查看译文
关键词
neuromorphic computing,magnetoimpedance effect
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要