谷歌浏览器插件
订阅小程序
在清言上使用

An analysis of CMAQ gas-phase dry deposition over North America throughgrid-scale and land-use-specific diagnostics in the context of AQMEII4

Christian Hogrefe, Jesse O. Bash,Jonathan E. Pleim, Donna B. Schwede,Robert C. Gilliam, Kristen M. Foley,K. Wyat Appel,Rohit Mathur

Atmospheric chemistry and physics(2023)

引用 0|浏览17
暂无评分
摘要
The fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4) is conducting a diagnostic intercomparison and evaluation of deposition simulated by regional-scale air quality models over North America and Europe. In this study, we analyze annual AQMEII4 simulations performed with the Community Multiscale Air Quality Model (CMAQ) version 5.3.1 over North America. These simulations were configured with both the M3Dry and Surface Tiled Aerosol and Gas Exchange (STAGE) dry deposition schemes available in CMAQ. A comparison of observed and modeled concentrations and wet deposition fluxes shows that the AQMEII4 CMAQ simulations perform similarly to other contemporary regional-scale modeling studies. During summer, M3Dry has higher ozone (O-3) deposition velocities (Vd) and lower mixing ratios than STAGE for much of the eastern US, while the reverse is the case over eastern Canada and along the US West Coast. In contrast, during winter STAGE has higher O-3 V-d and lower mixing ratios than M3Dry over most of the southern half of the modeling domain, while the reverse is the case for much of the northern US and southern Canada. Analysis of the diagnostic variables defined for the AQMEII4 project, i.e., grid-scale and land-use-specific effective conductances and deposition fluxes for the major dry deposition pathways, reveals generally higher summertime stomatal and wintertime cuticular grid-scale effective conductances for M3Dry and generally higher soil grid-scale effective conductances (for both vegetated and bare soil) for STAGE in both summer and winter. On a domain-wide basis, the stomatal grid-scale effective conductances account for about half of the total O-3 V-d during daytime hours in summer for both schemes. Employing land-use-specific diagnostics, results show that daytime V-d varies by a factor of 2 between land use (LU) categories. Furthermore, M3Dry vs. STAGE differences are most pronounced for the stomatal and vegetated soil pathway for the forest LU categories, with M3Dry estimating larger effective conductances for the stomatal pathway and STAGE estimating larger effective conductances for the vegetated soil pathway for these LU categories. Annual domain total O-3 deposition fluxes differ only slightly between M3Dry (74.4 Tg yr(-1)) and STAGE (76.2 Tg yr(-1)), but pathway-specific fluxes to individual LU types can vary more substantially on both annual and seasonal scales, which would affect estimates of O-3 damage to sensitive vegetation. A comparison of two simulations differing only in their LU classification scheme shows that the differences in LU cause seasonal mean O-3 mixing ratio differences on the order of 1 ppb across large portions of the domain, with the differences generally being largest during summer and in areas characterized by the largest differences in the fractional coverages of the forest, planted and cultivated, and grassland LU categories. These differences are generally smaller than the M3Dry vs. STAGE differences outside the summer season but have a similar magnitude during summer. Results indicate that the deposition impacts of LU differences are caused by differences in the fractional coverages and spatial distributions of different LU categories and the characterization of these categories through variables like surface roughness and vegetation fraction in lookup tables used in the land surface model and deposition schemes. Overall, the analyses and results presented in this study illustrate how the diagnostic grid-scale and LU-specific dry deposition variables adopted for AQMEII4 can provide insights into similarities and differences between the CMAQ M3Dry and STAGE dry deposition schemes that affect simulated pollutant budgets and ecosystem impacts from atmospheric pollution.
更多
查看译文
关键词
dry deposition,diagnostics,gas-phase,grid-scale,land-use-specific
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要