Decomposition mechanism of hydrofluorocarbon (HFC-245fa) in supercritical water: A ReaxFF-MD and DFT study

International Journal of Hydrogen Energy(2023)

Cited 5|Views6
No score
Abstract
In this work, the concept of using supercritical water to treat Hydrofluorocarbons (HFCs) refrigerants waste is proposed. Taking 1,1,1,3,3-Pentafluoropropane (HFC-245fa) as the research object, based on the ReaxFF reactive force field molecular dynamics method and density function theory, the decomposition mechanism of HFC-245fa in supercritical water, the effects of temperature, HFC-245fa mass concentration and oxygen addition on the decomposition of HFC-245fa in supercritical water and decomposition mechanism were studied. The results show that the main stable products of HFC-245fa decomposition in su-percritical water are HF, CO2, CO and H2. In supercritical water, center dot F radicals can easily combine with H2O molecules and then rapidly decompose to generate HF molecules and center dot OH radicals. The hydrogen extraction reaction of center dot H radicals with H atoms in HFC-245fa molecules and H2O molecules has relatively low energy barrier. center dot OH radicals can also participate in the dehydrogenation reaction, promoting the further dehydrogenation of HFC-245fa molecules and their molecular fragments. Moreover, it can combine with carbon-containing molecular fragments to promote the conversion of C element to CO and CO2. The lower concentration of HFC-245fa promotes the conversion of C element and generation of H2. The addition of ox-ygen facilitates the generation of center dot OH radicals and promotes the conversion of C element to CO2, but reduces the generation of CO and H2. Under the condition of HFC-245fa mass con-centration of 13.0%, the calculated formation apparent activation energies of HF, CO and CO2, H2 are 196.3, 368.5 and 249.0 kJ center dot mol-1, respectively.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
More
Translated text
Key words
Waste refrigerant treatment,Supercritical water gasification,ReaxFF molecular dynamics,simulation,Density function theory,Decomposition mechanism
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined