The Transformational Power of Frequency Phase Transfer Methods for ngEHT

Galaxies(2023)

Cited 7|Views15
No score
Abstract
(Sub) mm VLBI observations are strongly hindered by limited sensitivity, with the fast tropospheric fluctuations being the dominant culprit. We predict great benefits from applying next-generation frequency phase transfer calibration techniques for the next generation Event Horizon Telescope (ngEHT), using simultaneous multi-frequency observations. We present comparative simulation studies to characterise its performance, the optimum configurations, and highlight the benefits of including observations at 85 GHz along with the 230 and 340 GHz bands. The results show a transformational impact on the ngEHT array capabilities, with orders of magnitude improved sensitivity, observations routinely possible over the whole year, and ability to carry out micro-arcsecond astrometry measurements at the highest frequencies, amongst others. This will enable the addressing of a host of innovative open scientific questions in astrophysics. We present a solution for highly scatter-broadened sources such as SgrA*, a prime ngEHT target. We conclude that adding the 85 GHz band provides a pathway to an optimum and robust performance for ngEHT in sub-millimeter VLBI, and strongly recommmend its inclusion in the simultaneous multi-frequency receiver design.
More
Translated text
Key words
astronomical techniques,very long baseline interferometry
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined