Assessment of catalytic, antimicrobial and molecular docking analysis of starch-grafted polyacrylic acid doped BaO nanoparticles.

International journal of biological macromolecules(2023)

Cited 36|Views21
No score
Abstract
The removal of cationic dyes from water has received a great attention of researchers considering their influence on environment and ecosystem. In current work, starch-grafted-poly acrylic acid (St-g-PAA) doped BaO nanoparticles have been synthesized by co-precipitation approach. The aim of this research was to reduce the harmful methylene blue dye and evaluate the antibacterial activity of St-g-PAA doped BaO. XRD spectra exhibited the tetragonal structure of BaO and no variations occurred upon doping. The optical properties of St-g-PAA doped BaO have been evaluated by UV-Vis spectrophotometer. The existence of a dopant in the product was verified using EDS spectroscopy. TEM revealed the formation of cubic-shaped NPs of BaO and upon the addition of St-g-PAA, a few nanorod-like structures. The higher concentration of St-g-PAA doped BaO exhibit a remarkable reduction of methylene blue in a basic environment. Furthermore, St-g-PAA doped BaO revealed higher antimicrobial efficacy against Staphylococcus aureus in comparison to Escherichia coli. In silico studies were conducted against enoyl-[acylcarrier-protein] reductase (FabI) and beta-lactamase enzyme to evaluate the potential of both St-g-PAA and St-g-PAA doped BaO nanocomposites as their inhibitors and to rationalize their possible mode of action.
More
Translated text
Key words
BaO,Catalysis,Starch
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined