Experimental study on longitudinal-torsional ultrasonic vibration drilling of carbon fiber–reinforced plastics/titanium alloy stacks

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY(2022)

引用 1|浏览2
暂无评分
摘要
Carbon fiber–reinforced plastics (CFRP)/titanium alloy (Ti) stacks are extensively applied in the aerospace industry due to their excellent mechanical properties. However, their poor machinability poses great challenges. In this study, longitudinal-torsional ultrasonic vibration drilling (LT-UVD) is innovatively introduced to improve the quality of CFRP/Ti drilling. First, the separation mode of LT-UVD is analyzed by kinematic equations. Then, an experimental platform is built based on the LT-UVD vibration actuator to perform CFRP/Ti drilling experiments. The thrust force, interface temperature, hole wall quality, hole defects, Ti chip morphologies, and tool wear in LT-UVD are experimentally compared against conventional drilling (CD) and longitudinal ultrasonic vibration drilling (L-UVD). The experimental results show that, compared with CD and L-UVD, the thrust force of CFRP in LT-UVD decreases by 20.36–40.55% and 2.04–14.61%, while the thrust force of Ti decreases by 19.08–24.83% and 1.95–9.34%. Moreover, a relatively low maximum interface temperature is achieved in LT-UVD. In addition, the hole size accuracy, surface roughness for the hole’s inner surface, and delamination factor are improved in LT-UVD. Fiber pullout defects, chip-breaking performance, and tool wear of CFRP are improved due to torsional vibration in LT-UVD. Finally, according to the high-speed camera, damage forms of the interface area are different when drilling CFRP/Ti stacks with various drilling sequences.
更多
查看译文
关键词
CFRP/Ti stacks,Ultrasonic drilling,LT-UVD,Defect suppression,Surface integrity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要