Switching the Photoreactions of Ir(III) Diamine Complexes between C-N Coupling and Dehydrogenation under Visible Light Irradiation

INORGANIC CHEMISTRY(2022)

Cited 1|Views3
No score
Abstract
The selective photoreactions under mild conditions play an important role in synthetic chemistry. Herein, efficient and mild protocols for switching the photoreactions of Ir(III)-diamine complexes between the interligand C-N coupling and dehydrogenation are developed in the presence of O2 in EtOH solution. The photoreactions of achiral diamine complexes rac[Ir(L)2(dm)](PF6) (L is 2-phenylquinoline or 2-(2,4-difluorophenyl)quinoline, dm is 1,2-ethylenediamine, 1,2-diaminopropane, 2methyl-1,2-diamino-propane, or N,N '-dimethyl-1,2-ethylenediamine) are competitive in the oxidative C-N coupling and dehydrogenation at room temperature, which can be switched into the interligand C-N coupling reaction at 60 degrees C, affording hexadentate complexes in good to excellent yields, or the dehydrogenative reaction in the presence of a catalytic amount of TEMPO as an additive, affording imine complexes. Mechanism studies reveal that 1O2 is the major reactive oxygen species, and metal aminyl is the key intermediate in the formation of the oxidative C-N coupling and imine products in the photoreaction processes. These will provide a new and practical protocol for the synthesis of multidentate and imine ligands in situ via the postcoordinated strategy under mild conditions.
More
Translated text
Key words
diamine complexes,irradiation,iriii,photoreactions
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined