Synchronization of excitation waves in a two-layer network of FitzHugh-Nagumo neurons with noise modulation of interlayer coupling parameters

IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA(2022)

引用 0|浏览0
暂无评分
摘要
The purpose of this work is to study the possibility of synchronization of wave processes in distributed excitable systems by means of noise modulation of the coupling strength between them. Methods. A simple model of a neural network, which consists of two coupled layers of excitable FitzHugh-Nagumo oscillators with a ring topology, is studied by numerical simulation methods. The connection between the layers has a random component, which is set for each pair of coupled oscillators by independent sources of colored Gaussian noise. Results. The possibility to obtain a regime close to full (in-phase) synchronization of traveling waves in the case of identical interacting layers and a regime of synchronization of wave propagation velocities in the case of non-identical layers differing in the values of the coefficients of intra-layer coupling is shown for certain values of parameters of coupling noise (intensity and correlation time). Conclusion. It is shown that the effects of synchronization of phases and propagation velocities of excitation waves in ensembles of neurons can be controlled using random processes of interaction of excitable oscillators set by statistically independent noise sources. In this case, both the noise intensity and its correlation time can serve as control parameters. The results obtained on a simple model can be quite general.
更多
查看译文
关键词
networks of oscillators,nonlinear systems,FitzHugh-Nagumo model,nonlinear coupling,colored noise,noise modulation,synchronization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要