Integrated Hydrogeochemical Groundwater Flow Path Modelling in an Arid Environment

Milad Masoud, Natarajan Rajmohan, Jalal Basahi, Michael Schneider, Burhan Niyazi, Abdulaziz Alqarawy

WATER(2022)

引用 1|浏览4
暂无评分
摘要
In this study, water-rock interaction, salinity sources, evolution, and the mixing of groundwater were modelled. The objectives of this research are to understand the hydrogeochemical factors that govern groundwater composition in a shallow aquifer system, Jazan Province, Saudi Arabia. The study aquifer is called a Quaternary aquifer, which is composed of gravel, sand, sandstone, and intercalated with some shale. In this study, 80 groundwater samples have been collected and analyzed for major ions and 30 representative samples were analyzed for Oxygen-18 (delta O-18) and Deuterium (delta D). NETPATH and environmental isotopes were integrated and applied to study the overall geochemical processes and to identify the salinity source in the groundwater. Saturation indices calculated for carbonates minerals indicates that 49%, 74%, and 61% of groundwater samples are undersaturated in terms of calcite, aragonite, and dolomite minerals, respectively. The remaining groundwater samples (51%, 39%, and 26%) are close to saturation with calcite, dolomite, and aragonite minerals, respectively. The saturation indices of gypsum, anhydrite, silica, strontionite, and sepiolite minerals show undersaturation in all groundwater samples, which is likely due to the dilution through the groundwater recharge from the surface runoff. In this study, water-rock interaction models were employed with the concentration of major ions of all selected groundwater samples, in addition to reference waters such as rain and sea waters, to evaluate the chemistry of groundwater in the flow path. Mixing calculations suggested that there is a variable contribution of rainwater (5% to 53%) in groundwater samples. The results indicate that evaporation and infiltration have a major impact on water chemistry in the study site. The intrusion of seawater at the coastal zone is well identified in some wells. Stable isotope data (delta O-18 and delta D) support the results and underline the impact of evaporation processes on the groundwater and infiltration of evaporated water.
更多
查看译文
关键词
groundwater hydrochemistry,flow path modelling,mixing calculation,evaporation,stable isotopes,Saudi Arabia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要