Dynamic transmission-reflection dichroism based on humidity-responsive metal-hydrogel-metal nanocavities

EPJ APPLIED METAMATERIALS(2022)

引用 0|浏览8
暂无评分
摘要
"Lycurgus cup" effect, referring dichroism between reflection and transmission modes of the same structures, is a peculiar phenomenon of multi-faceted display in structural color. Beyond the static dichrotic display, the realization of dynamic dichroism desires active materials and tunable structures, and owns the great demand from smart display, anti-counterfeiting and environmental sensing. We hereby propose a metal-hydrogel-metal (MHM) nanocavity for dynamic dichrotic display. This structure includes thin silver layers to induce the partial transmission with the existing reflection, and a polyvinyl alcohol (PVA) hydrogel layer owning the swelling/deswelling deformability to humidity change. The following experimental measurements and theoretical analysis prove that the reflection and transmission modes exist at distinct wavelengths, and the swelling hydrogel layer by humidity change between 10 and 90% RH can dynamically modulate the dichrotic resonance with the wavelength shift over 100 nm. Such environmental-sensitive and real-time tunable dichroism with hydrogel-based structural color is then verified for multi-color printing, resolution test, and cycling test.
更多
查看译文
关键词
Transmission-reflection dichroism, dynamic structural color, MIM nanocavity, hydrogel microstructure, gray-scale exposure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要